## Step-By-Step Derivation of the Analytic Solution of Equation (50)

The nonlinear equation to be solved is

$$
\begin{equation*}
s_{\mathrm{b}}+u+\theta \frac{V_{\mathrm{b}}\left(\Delta y^{n}+s_{\mathrm{b}}\right)-V_{\mathrm{b}}\left(\Delta y^{n}\right)}{s_{\mathrm{b}}}=0 \tag{A.1}
\end{equation*}
$$

Substituting equation (30) of the paper yields

$$
\begin{equation*}
s_{\mathrm{b}}+u+\varphi \frac{\left\lfloor\Delta y^{n}-s_{\mathrm{b}}\right\rfloor^{2}-\left\lfloor\Delta y^{n}\right\rfloor^{2}}{s_{\mathrm{b}}}=0 \tag{A.2}
\end{equation*}
$$

where $\Delta y^{n}=h_{\mathrm{b}}-y_{\mathrm{b}}^{n}$ is the 'compression' at the previous time step ( $n$ ) and $\varphi=\frac{1}{2} \theta k_{\mathrm{b}}$.

## No Contact at the Previous Step

For the case that there was no contact at the previous time step, i.e.

$$
\begin{equation*}
\Delta y^{n} \leq 0 \tag{A.3}
\end{equation*}
$$

we have that if

$$
\begin{equation*}
s_{b} \geq \Delta y^{n} \tag{A.4}
\end{equation*}
$$

equation (A.2) reduces to

$$
\begin{equation*}
s_{\mathrm{b}}+u=0 . \tag{A.5}
\end{equation*}
$$

Thus in that case $s_{\mathrm{b}}=-u$ and therefore, from (A.4) it follows that then

$$
\begin{equation*}
u \leq-\Delta y^{n} \tag{A.6}
\end{equation*}
$$

On the other hand if

$$
\begin{equation*}
s_{\mathrm{b}}<\Delta y^{n} \tag{A.7}
\end{equation*}
$$

the nonlinear equation reduces to

$$
\begin{equation*}
s_{\mathrm{b}}+u+\varphi \frac{\left(\Delta y^{n}-s_{\mathrm{b}}\right)^{2}}{s_{\mathrm{b}}}=0 \tag{A.8}
\end{equation*}
$$

or

$$
\begin{equation*}
(1+\varphi)\left(s_{\mathrm{b}}\right)^{2}+\left(u-2 \varphi \Delta y^{n}\right) s_{\mathrm{b}}+\varphi\left(\Delta y^{n}\right)^{2}=0 \tag{A.9}
\end{equation*}
$$

which has the solutions

$$
\begin{equation*}
s_{\mathrm{b}}=\frac{2 \psi \Delta y^{n}-u \pm \sqrt{u^{2}-4 \varphi \Delta y^{n}\left(u+\Delta y^{n}\right)}}{2(1+\varphi)} \tag{A.10}
\end{equation*}
$$

The term inside the square root is always positive since $\Delta y^{n}$ is negative and $\left(u+\Delta y^{n}\right)$ is positive. Since we that $s_{\mathrm{b}} \leq \Delta y^{n}<0$, the solution must be negative, which is assured only for the solution with the negative root, therefore

$$
\begin{equation*}
s_{\mathrm{b}}=\frac{2 \psi \Delta y^{n}-u-\sqrt{u^{2}-4 \varphi \Delta y^{n}\left(u+\Delta y^{n}\right)}}{2(1+\varphi)} \tag{A.11}
\end{equation*}
$$

Now, from (A.7) it follows that for this case

$$
\begin{equation*}
\Delta y^{n}>\frac{2 \psi \Delta y^{n}-u-\sqrt{u^{2}-4 \varphi \Delta y^{n}\left(u+\Delta y^{n}\right)}}{2(1+\varphi)} \tag{A.12}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\left(2 \Delta y^{n}+u\right)^{2}>u^{2}-4 \varphi \Delta y^{n}\left(u+\Delta y^{n}\right) \tag{A.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta y(\Delta y+u)(1+\varphi)>0 \tag{A.14}
\end{equation*}
$$

Since $\Delta^{n}<0$ and $\varphi>0$, it follows that $\left(\Delta y^{n}+u\right)<0$ thus

$$
\begin{equation*}
u>-\Delta y^{n} \tag{A.15}
\end{equation*}
$$

which is complementary to (A.6). Therefore testing (A.6) can serve as a computable criterion for deciding which of the two cases [(A.4) or (A.7)] is applicable.

## Contact in the Previous Step

Now we assume

$$
\begin{equation*}
\Delta y^{n}>0 \tag{A.16}
\end{equation*}
$$

If

$$
\begin{equation*}
s_{\mathrm{b}} \leq \Delta y^{n} \tag{A.17}
\end{equation*}
$$

then the nonlinear equaton reduces to

$$
\begin{equation*}
(1+\varphi) s_{\mathrm{b}}+u-2 \varphi \Delta y^{n}=0 \tag{A.18}
\end{equation*}
$$

therefore the solution then is

$$
\begin{equation*}
s_{\mathrm{b}}=\frac{u-2 \varphi \Delta y^{n}}{1+\varphi} \tag{A.19}
\end{equation*}
$$

and, from (A.17), we have

$$
\begin{equation*}
\Delta y^{n} \leq \frac{u-2 \varphi \Delta y^{n}}{1+\varphi} \tag{A.20}
\end{equation*}
$$

Therefore the corresponding criterion can be expressed as

$$
\begin{equation*}
u \geq \Delta y^{n}(\varphi-1) \tag{A.21}
\end{equation*}
$$

On the other hand if

$$
\begin{equation*}
s_{\mathrm{b}}>\Delta y^{n} \tag{A.22}
\end{equation*}
$$

the nonlinear equation reduces to

$$
\begin{equation*}
\left(s_{\mathrm{b}}\right)^{2}+u s_{\mathrm{b}}+\varphi\left(\Delta y^{n}\right)^{2}=0 \tag{A.23}
\end{equation*}
$$

which has the solutions

$$
\begin{equation*}
s_{\mathrm{b}}=-\frac{1}{2} u \pm \frac{1}{2} \sqrt{u^{2}+4 \varphi\left(\Delta y^{n}\right)^{2}} \tag{A.24}
\end{equation*}
$$

Given that $s_{\mathrm{b}}>\Delta y^{n}>0, s_{\mathrm{b}}$ must be positive, which is assured only for the solution with the positive root. Hence the solution for this case is

$$
\begin{equation*}
s_{\mathrm{b}}=-\frac{1}{2} u+\frac{1}{2} \sqrt{u^{2}+4 \varphi\left(\Delta y^{n}\right)^{2}} \tag{A.25}
\end{equation*}
$$

Therefore, from (A.22), we have that

$$
\begin{equation*}
2 \Delta y^{n}<-u+\sqrt{u^{2}+4 \varphi\left(\Delta y^{n}\right)^{2}} \tag{A.26}
\end{equation*}
$$

which equates to

$$
\begin{equation*}
u^{2}+4 \varphi\left(\Delta y^{n}\right)^{2}>\left(2 \Delta y^{n}+u\right)^{2} \tag{A.27}
\end{equation*}
$$

yielding the criterion

$$
\begin{equation*}
u<\Delta y^{n}(\varphi-1) \tag{A.28}
\end{equation*}
$$

which is complementary to (A.21). Therefore testing (A.21) can serve as a computable criterion for deciding which of the two cases $[(\mathrm{A} .17)$ or (A.22)] is applicable.

## Summary

Collecting all the cases, we have

$$
\begin{align*}
\Delta y^{n} \leq 0 \quad \text { and } \quad u<-\Delta y^{n}: s_{\mathrm{b}} & =-u  \tag{A.29}\\
\Delta y^{n} \leq 0 \quad \text { and } \quad u \geq-\Delta y^{n}: s_{\mathrm{b}} & =\frac{2 \psi \Delta y^{n}-u-\sqrt{u^{2}-4 \varphi \Delta y^{n}\left(u+\Delta y^{n}\right)}}{2(1+\varphi)}  \tag{A.30}\\
\Delta y^{n}>0 \quad \text { and } \quad u \geq \Delta y^{n}(\varphi-1): s_{\mathrm{b}} & =\frac{u-2 \varphi \Delta y^{n}}{1+\varphi}  \tag{A.31}\\
\Delta y^{n}>0 \quad \text { and } \quad u<\Delta y^{n}(\varphi-1): s_{\mathrm{b}} & =-\frac{1}{2} u+\frac{1}{2} \sqrt{u^{2}+4 \varphi\left(\Delta y^{n}\right)^{2}} \tag{A.32}
\end{align*}
$$

