Step-By-Step Derivation of the Energy Balance in Equation (52)

Identities

In this derivation we make use of the following identities. For any vectors \mathbf{x} and \mathbf{y} we have

$$
\begin{equation*}
\mathbf{x}^{\top} \mathbf{y}=\mathbf{y}^{\top} \mathbf{x} \tag{B.1}
\end{equation*}
$$

For any symmetric matrix \mathbf{D}

$$
\begin{align*}
\left(\mu \mathbf{x}^{n+\frac{1}{2}}\right)^{\top} \mathbf{D} \delta \mathbf{x}^{n+\frac{1}{2}} & =\left(\mathbf{x}^{n+1}+\mathbf{x}^{n}\right)^{\top} \mathbf{D}\left(\mathbf{x}^{n+1}-\mathbf{x}^{n}\right) \\
& =\left(\mathbf{x}^{n+1}\right)^{\top} \mathbf{D} \mathbf{x}^{n+1}-\left(\mathbf{x}^{n}\right)^{\top} \mathbf{D} \mathbf{x}^{n} \\
& =\delta\left(\left(\mathbf{x}^{n+\frac{1}{2}}\right)^{\top} \mathbf{D} \mathbf{x}^{n+\frac{1}{2}}\right) \tag{B.2}
\end{align*}
$$

In scalar form, and denoting $g^{n}=\left(x^{n}\right)^{2}$, the same identity reduces to

$$
\begin{align*}
\mu x^{n+\frac{1}{2}} \delta x^{n+\frac{1}{2}} & =\left(x^{n+1}+x^{n}\right)\left(x^{n+1}-x^{n}\right) \\
& =\left(x^{n+1}\right)^{2}-\left(x^{n}\right)^{2} \\
& =\delta g^{n+\frac{1}{2}} \tag{B.3}
\end{align*}
$$

Furthermore, for $z=\mathrm{b}, \mathrm{c}$ we have

$$
\begin{equation*}
y_{z}^{n}=\mathbf{g}_{z}^{\top} \overline{\mathbf{y}}^{n} \tag{B.4}
\end{equation*}
$$

Energy Balance

The starting point is equation (41) of the paper:

$$
\begin{equation*}
\delta \overline{\mathbf{q}}^{n+\frac{1}{2}}=-\mathbf{A} \mu \overline{\mathbf{y}}^{n+\frac{1}{2}}-\mathbf{B} \delta \overline{\mathbf{y}}^{n+\frac{1}{2}}+\xi \sum_{z=\mathrm{c}, \mathrm{~b}, \mathrm{e}} \mathbf{g}_{z} F_{z}^{n+\frac{1}{2}} \tag{B.5}
\end{equation*}
$$

Multiplying the left-hand side of (B.5) with $\left(\mu \overline{\mathbf{q}}^{n+\frac{1}{2}}\right)^{\top}$ and the right-hand side with $\left(\delta \overline{\mathbf{y}}^{n+\frac{1}{2}}\right)^{\top}$ (these terms are equal per equation (40) of the paper) yields

$$
\begin{align*}
\left(\mu \overline{\mathbf{q}}^{n+\frac{1}{2}}\right) \delta \overline{\mathbf{q}}^{n+\frac{1}{2}}= & -\left(\delta \overline{\mathbf{y}}^{n+\frac{1}{2}}\right)^{\top} \mathbf{A} \mu \overline{\mathbf{y}}^{n+\frac{1}{2}}-\left(\delta \overline{\mathbf{y}}^{n+\frac{1}{2}}\right)^{\top} \mathbf{B} \delta \overline{\mathbf{y}}^{n+\frac{1}{2}} \\
& +\xi\left(\delta y^{n+\frac{1}{2}}\right)^{\top} \mathbf{g}_{\mathrm{c}} F_{\mathrm{c}}^{n+\frac{1}{2}}+\xi\left(\delta y^{n+\frac{1}{2}}\right)^{\top} \mathbf{g}_{\mathrm{b}} F_{\mathrm{b}}^{n+\frac{1}{2}}+\frac{1}{2} \xi\left(\delta y^{n+\frac{1}{2}}\right)^{\top} \mathbf{g}_{\mathrm{e}} \mu F_{\mathrm{e}}^{n+\frac{1}{2}} \tag{B.6}
\end{align*}
$$

Using (B.1),(B.2), and (B.4), and noting that the diagonal matrices \mathbf{A} and \mathbf{B} are per definition symmetrical, we can write this as

$$
\begin{equation*}
\frac{\delta\left(\overline{\mathbf{q}}^{\top} \overline{\mathbf{q}}+\overline{\mathbf{y}} \mathbf{A} \overline{\mathbf{y}}\right)^{n+\frac{1}{2}}}{\xi}=-\frac{\left(\delta \overline{\mathbf{y}}^{n+\frac{1}{2}}\right)^{\top} \mathbf{B} \delta \overline{\mathbf{y}}^{n+\frac{1}{2}}}{\xi}+\underbrace{\delta y_{\mathrm{c}}^{n+\frac{1}{2}} F_{\mathrm{c}}^{n+\frac{1}{2}}}_{G_{\mathrm{c}}}+\underbrace{\delta y_{\mathrm{b}}^{n+\frac{1}{2}} F_{\mathrm{b}}^{n+\frac{1}{2}}}_{G_{\mathrm{b}}}+\frac{1}{2} \mathbf{g}_{\mathrm{e}}^{\top} \delta y^{n+\frac{1}{2}} \mu F_{\mathrm{e}}^{n+\frac{1}{2}} \tag{B.7}
\end{equation*}
$$

Using (B.3) and equation (29) of the paper, the term G_{c} is

$$
\begin{align*}
G_{\mathrm{c}} & =\delta y_{\mathrm{c}}^{n+\frac{1}{2}} k_{\mathrm{c}}\left(h_{\mathrm{c}}-\frac{1}{2} \mu y_{\mathrm{c}}^{n+\frac{1}{2}}\right)-\frac{r_{\mathrm{c}}}{\Delta t}\left(\delta y_{\mathrm{c}}^{n+\frac{1}{2}}\right)^{2} \\
& =-\frac{1}{2} k_{\mathrm{c}} \delta\left(h_{\mathrm{c}}-y_{\mathrm{c}}\right)^{n+\frac{1}{2}} \mu\left(h_{\mathrm{c}}-y_{\mathrm{c}} n^{n+\frac{1}{2}}-\frac{r_{\mathrm{c}}}{\Delta t}\left(\delta y_{\mathrm{c}}^{n+\frac{1}{2}}\right)^{2}\right. \\
& =-\delta\left(\frac{1}{2} k_{\mathrm{c}}\left[h_{\mathrm{c}}-y_{\mathrm{c}}\right]^{2}\right)^{n+\frac{1}{2}}-\frac{r_{\mathrm{c}}}{\Delta t}\left(\delta y_{\mathrm{c}}^{n+\frac{1}{2}}\right)^{2}, \\
& =-\delta V_{\mathrm{c}}^{n+\frac{1}{2}}-\frac{r_{\mathrm{c}}}{\Delta t}\left(\delta y_{\mathrm{c}}^{n+\frac{1}{2}}\right)^{2} \tag{B.8}
\end{align*}
$$

and using equation (30) of the paper, the term G_{b} can be written

$$
\begin{equation*}
G_{\mathrm{b}}=-\delta y_{\mathrm{b}} \frac{\delta V_{\mathrm{b}}^{n+\frac{1}{2}}}{\delta y_{\mathrm{b}}}=-\delta V_{\mathrm{b}}^{n+\frac{1}{2}} \tag{B.9}
\end{equation*}
$$

Substituting back into (B.7) yields

$$
\begin{equation*}
\delta\left(\xi^{-1}\left[\overline{\mathbf{q}}^{\top} \overline{\mathbf{q}}+\overline{\mathbf{y}} \mathbf{A} \overline{\mathbf{y}}\right]+V_{\mathrm{c}}+V_{\mathrm{b}}\right)^{n+\frac{1}{2}}=\frac{1}{2} \mathbf{g}_{\mathrm{e}}^{\top} \delta y^{n+\frac{1}{2}} \mu F_{\mathrm{e}}^{n+\frac{1}{2}}-\left[\frac{\left(\delta \overline{\mathbf{y}}^{n+\frac{1}{2}}\right)^{\top} \mathbf{B} \delta \overline{\mathbf{y}}^{n+\frac{1}{2}}}{\xi}+\frac{r_{\mathrm{c}}}{\Delta t}\left(\delta y_{\mathrm{c}}^{n+\frac{1}{2}}\right)^{2}\right] \tag{ㄷ.10}
\end{equation*}
$$

Dividing by Δt and using equation (50) from the paper, this can be written as

$$
\begin{equation*}
\frac{\delta H^{n+\frac{1}{2}}}{\Delta t}=\underbrace{\frac{\mathbf{g}_{\mathrm{e}}^{\top} \delta y^{n+\frac{1}{2}} \mu F_{\mathrm{e}}^{n+\frac{1}{2}}}{2 \Delta t}}_{P^{n+\frac{1}{2}}}-\underbrace{\left[\frac{\left(\delta \overline{\mathbf{y}}^{n+\frac{1}{2}}\right)^{\top} \mathbf{B} \delta \overline{\mathbf{y}}^{n+\frac{1}{2}}}{\xi \Delta t}+\frac{r_{\mathrm{c}}}{\Delta t^{2}}\left(\delta y_{\mathrm{c}}^{n+\frac{1}{2}}\right)^{2}\right]}_{Q^{n+\frac{1}{2}}}, \tag{B.11}
\end{equation*}
$$

which matches equation (52) in the paper.

